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Abstract
We study the problem of sensor scheduling for an intrusion detection task. We model this as a
2-player zero-sum game over a graph, where the defender (Player 1) seeks to identify the opti-
mal strategy for scheduling sensor orientations to minimize the probability of missed detection
at minimal cost, while the intruder (Player 2) aims to identify the optimal path selection strategy
to maximize missed detection probability at minimal cost. The defender’s strategy space grows
exponentially with the number of sensors, making direct computation of the Nash Equilibrium
(NE) strategies computationally expensive. To tackle this, we propose a distributed variant of the
Weighted Majority algorithm that exploits the structure of the game’s payoff matrix, enabling effi-
cient computation of the NE strategies with provable convergence guarantees. Next, we consider
a more challenging scenario where the defender lacks knowledge of the true sensor models and,
consequently, the game’s payoff matrix. For this setting, we develop online learning algorithms
that leverage bandit feedback from sensors to estimate the NE strategies. By building on existing
results from perturbation theory and online learning in matrix games, we derive high-probability
order-optimal regret bounds for our algorithms. Finally, through simulations, we demonstrate the
empirical performance of our proposed algorithms in both known and unknown payoff scenarios.
Keywords: Online Learning, Matrix Games, Sensor Scheduling, Finite-Sample Convergence

1. Introduction

In the modern landscape of security and surveillance, efficient deployment and scheduling of sen-
sors is critical in ensuring comprehensive monitoring and intrusion detection (Guvensan and Yavuz
(2011); Murray et al. (2007)). In managing sensing resources, the challenge involves not only their
placement (Dhillon and Chakrabarty (2003); Bhargav et al. (2023); Jourdan and Roy (2008)), but
also dynamically scheduling their orientations to maximize detection efficiency while minimizing
resource usage and operational costs (Osais et al.). Traditionally, sensor scheduling has been ap-
proached through various optimization techniques, yet these methods often fall short in adversarial
settings where an intelligent intruder (non-oblivious) can actively attempt to evade detection. In
such scenarios, game theory offers a robust framework for modeling and solving the intricate in-
teractions between the defending system and the intruding adversary (Pirani et al. (2021); An et al.
(2017)). Furthermore, the defending system may not have accurate knowledge of sensor perfor-
mance due to the inherent complexity of modeling certain sensors, such as cameras, or the lack of
prior knowledge about detection probabilities. These uncertainties lead to discrepancies between
the simulated and real-world game dynamics, requiring the defending system to learn the true game
online, and adaptively refine strategies using feedback from sensors to ensure effective detection
and maintain performance despite the model uncertainties.
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1.1. Related Work

In this section, we review existing works on security games, methods for solving large-scale games,
and online learning in games, highlighting how these approaches relate to our contributions.
Security Games: Many works in the literature have modeled security resource allocation tasks
using the Stackelberg game framework (Sinha et al. (2018); Korzhyk et al. (2010)). In Paruchuri
et al. (2008), the authors model a patrolling task to protect airports from attackers as a Stackelberg
game, where the defender commits to a mixed strategy for allocating patrolling resources and the
attacker best-responds with a pure attack strategy. However, we consider the setting where both
the players commit to mixed-strategies, and operate under concurrent decision-making conditions.
Since neither of the players can anticipate or respond to the other’s exact strategy in real-time, the
Stackelberg and Nash equilibria are equivalent in our game setting (Korzhyk et al. (2011)).
Solving Large Games: A line of work focuses on developing efficient techniques for approxi-
mately solving games with large strategy spaces (Ganzfried and Sandholm (2015); Lipton et al.
(2003); Sandholm (2015)). Li and Wellman (2020) introduce an iterative structure-learning ap-
proach to search for approximate solutions of many-player games. In Li et al. (2023) and Brown
et al. (2019), the authors study team-adversary games with combinatorial action spaces and pro-
pose a counterfactual regret minimization framework for learning individual strategies. Along the
lines of these works, we propose a distributed variant of the well-known Weighted Majority algo-
rithm (proposed in Freund and Schapire (1997)) which leverages the structure in the game’s payoff
function, to efficiently and iteratively estimate the NE, and establish convergence guarantees.
Online Learning in Games: In Fiez et al. (2021), the authors study online learning in periodic
zero-sum games and establish guarantees for convergence to equilibrium strategies. The authors of
Bailey and Piliouras (2019) study online learning in 2×2 zero-sum games and provide convergence
guarantees for gradient descent dynamics. However, for a general class of zero-sum games, the
dynamics of the equilibrium strategies generated by the learning process can be very intricate and
instances may fail to converge (Andrade et al. (2021); Cheung and Piliouras (2019)). Two closest
papers to our work on learning in matrix games with bandit feedback are: O’Donoghue et al. (2021)
- where the authors propose a UCB style algorithm for no-regret learning in matrix games; and
Chen et al. (2024) - where the authors present an adaptation of online mirror descent algorithm with
last-iterate convergence rates. The key distinction of our work is the application to the intrusion
detection setting, where we exploit the combinatorial structure of the game matrix arising from
sensor and path configurations to establish tighter regret bounds and faster convergence guarantees.

1.2. Contributions

We begin by modeling the sensor scheduling task as a zero-sum matrix game. First, we propose
a distributed variant of the Weighted Majority algorithm that leverages the structure of the game’s
payoff matrix to efficiently compute NE strategies, even in exponentially large strategy spaces, with
provable convergence guarantees. Second, recognizing that the defender may lack accurate knowl-
edge of the true sensor models and hence the game’s payoff matrix, we develop online learning
algorithms that rely on bandit feedback from the sensors to adaptively estimate the game matrix
and refine the defender’s sensor scheduling strategies. By building on results from perturbation
theory and online learning in matrix games, we derive high-probability order-optimal regret bounds
for these algorithms. Finally, we demonstrate the empirical performance of our methods through
numerical simulations, for both known and unknown payoff scenarios.
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2. Problem Formulation

We model the game environment as a graph G = (N,E), where the set of nodes N denotes the
regions of an environment, and the set of edges E denotes the possible transitions for the intruder
between the regions. Let S = {s1, . . . , sp}, with |S| = p, denote the set of sensors deployed on
a subset of nodes in the graph. Each sensor has d possible orientations, Θ = {θ1, . . . , θd}, with
|Θ| = d. Let cqk ∈ R≥0 be the cost of orienting the sensor sq ∈ S in the direction θk ∈ Θ.
Each sensor covers a subset of nodes in the graph depending on its orientation, which may not
be restricted to its neighboring nodes. Let I = {i1, i2, . . . , im},m = |I|, denote the set of joint
strategies of the defender, i.e., a set of all possible sensor orientations, and let {c1, c2, . . . , cm} be
the costs associated with each joint strategy. The cost ci of a joint strategy i ∈ I is the sum of the
individual costs associated with each sensor orientation in that strategy, i.e., ci =

∑p
q=1 c

q
kq,i

, where
kq,i is the orientation of sensor sq in the joint strategy i. We note that the number of joint strategies
is m = |Θ||S|, which is exponential in the number of sensors. We assume that the intruder starts at
a source node S and aims to reach a terminal node T in the graph, and has a finite set of possible
paths which it can take. We denote this by J = {j1, j2, . . . , jn}, n = |J |, which is the set of pure
strategies (paths) of the intruder, and let {r1, r2, . . . , rn}, rj ∈ R≥0, be the associated costs of the
respective paths. Let X and Y denote the set of mixed-strategies for the defender and intruder,
respectively. We have the following:

X =

{
x ∈ Rm;

∑
i∈I

xi = 1, x ≥ 0

}
;Y =

y ∈ Rn;
∑
j∈J

yj = 1, y ≥ 0

 . (1)

Each sensor sq ∈ S has a probability of detection pdetect,q. Specifically, if the intruder traverses
through a node which is covered by a sensor sq, it will be detected by that sensor with a probability
pdetect,q, and will go undetected by that sensor with probability (1 − pdetect,q). We now make the
following assumption on the sensor models.
Assumption 1: The sensors are imperfect with pdetect,q ∈ [pmin,q, pmax,q], where 0 < pmin,q <
pmax,q < 1, q = 1, ..., p. Furthermore, a detection event from a sensor sq is independent of detection
events from other sensors in S \ {sq}.

The goal of the defender is to minimize the probability of not detecting the intruder. If a cer-
tain node is covered by multiple sensors and the intruder has traversed that node, then the overall
probability of missed detection at that node is the product of the probability of missed detection of
all the sensors covering that node. For a scheduling strategy i ∈ I and a path j ∈ J , let V q

ij be the
number of nodes that are covered by the sensor sq in the orientation strategy i ∈ I and contained in
the intruder’s path j ∈ J . The overall probability of missed detection is given by:

pmiss(i, j) =

p∏
q=1

(1− pdetect,q)
V q
ij . (2)

We consider the additive log-likelihood representation for the probability of missed detection (as
multiplicative operations in (2) can lead to underflow and numerical instability), given by

log(pmiss(i, j)) =

p∑
q=1

V q
ij log(1− pdetect,q). (3)
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Let A,B ∈ Rm×n denote the payoff matrices for the defender and intruder, respectively. The
payoff values for a pure strategy pair (i, j) for the defender and intruder are given by Aij =
log(pmiss(i, j)) + ci and Bij = − log(pmiss(i, j)) + rj , respectively. The defender plays x ∈ X ,
the intruder plays y ∈ Y , and they receive payoffs x⊤Ay and, x⊤By respectively. The defender
aims to find the mixed strategy x∗ that minimizes the expected value of its payoff, given the mixed
strategy y of the intruder, i.e., the defender aims to solve the following optimization problem:

x∗ = argmin
x∈X

x⊤Ay. (4)

Similarly, given the mixed strategy x of the defender, the intruder aims to solve the following:

y∗ = argmin
y∈Y

x⊤By. (5)

This will form a bimatrix game which we denote by the tuple: G = {A,B}. Note that G is a
non-zero sum game, since A + B ̸= 0 in general. A bimatrix game G := {A,B} is zero-sum if
A+B = 0. The solution to a zero-sum game, i.e., the Nash equilibrium strategies (x∗, y∗), can be
obtained by solving the nested min-max optimization problem below:

(x∗, y∗) ∈ argmin
x∈X

argmax
y∈Y

x⊤Ay. (6)

Definition 1 (Nash Equilibrium) A pair of mixed-strategies (x∗, y∗) is a Nash Equilibrium of the
zero-sum game A if x∗⊤Ay∗ ≤ x⊤Ay∗ and x∗⊤Ay∗ ≥ x∗⊤Ay, ∀x ∈ X, ∀y ∈ Y .

Consider the following G′ := {A′, B′}, where matrices A′ and B′ are such that

A′
ij = Aij − rj ; B′

ij = Bij − ci. (7)

Based on the results presented in Section 2.1 of Kannan and Theobald (2010), we have the fol-
lowing result that characterizes the equilibrium property of G′. All detailed proofs supporting our
theoretical results are deferred to Appendix B.

Proposition 2 The game G′ := {A′, B′} is zero-sum and has the same set of Nash Equilibria as G.

We consider the setting in which the defender has knowledge of ci’s and rj’s for all i ∈ I and
j ∈ J . However, the defender may not know the sensor detection probabilities pdetect, consequently
the game payoff matrix A, accurately. Proposition 2 also implies that an ϵ-NE1 of (A′, B′) is also
an ϵ-NE for the original game (A,B). With a slight abuse of notation, we will denote the modified
game (which is zero-sum) by G, which can be completely specified by the payoff matrix A, where
Aij = log(pmiss(i, j)) + ci − rj .

Remark 3 We assume that the entries of A are bounded in [0, 1]. If this is not the case, we nor-
malize A using its maximum and minimum values, Amin = mini,j Aij and Amax = maxi,j Aij ,
respectively. This normalization preserves the Nash equilibrium strategies, as scaling and shift-
ing the payoffs affect only the game’s value, not the equilibrium strategies themselves. Addition-
ally, we note that an ϵ-NE of the normalized game is an ϵ′-NE of the un-normalized game, where
ϵ′ = (Amax − Amin)ϵ. Therefore, it is sufficient to restrict all analysis to the normalized zero-sum
game, as it fully captures the essential properties and results of the original game.

1. A pair of strategies (x′, y′) is a ϵ-NE of A if x′⊤Ay′ ≤ x′⊤Ay + ϵ and x′⊤Ay′ ≥ x⊤Ay′ − ϵ, ∀x ∈ X, ∀y ∈ Y .

4



SENSOR SCHEDULING IN INTRUSION DETECTION GAMES

3. Distributed Weighted Majority Algorithm

In this section, we propose a fast and scalable algorithm which leverages the structure of the game
matrix A for efficiently solving for the NE strategies. For a moderate number of strategies, the
min-max optimization problem in (6) can be solved to compute the NE strategies using a bi-level
Linear Programming (LP) formulation Nehme (2009). However, for the sensor scheduling problem
considered in this paper, the defender has an exponentially sized set of scheduling strategies. For
example, if d = |Θ| = 4 (i.e., each sensor has 4 possible orientations) and |S| = 10 (i.e., there are
10 sensors), then |I| = 410 = 1, 048, 576. Solving for the exact NE using an LP can become com-
putationally intractable due to a large number of variables and constraints. To this end, we present
the Distributed Weighted Majority (DWM) algorithm (Algorithm 1), a variant of the Weighted Ma-
jority (WM) algorithm originally developed by Freund and Schapire (1997). The DWM algorithm
leverages the structure of the game to perform multiplicative weight updates locally for each sensor,
which will then be aggregated to estimate the joint scheduling strategy for the defender.

First, we define the set of sub-game payoff matrices A = {A1, A2, . . . , Ap}, where Aq ∈ Rd×n

corresponds to sensor sq ∈ S, given by

Aq
kj = V q

kj × log(1− pdetect,q) + cqk, (8)

where V q
kj contains all the nodes that are covered by the sensor sq oriented in the direction θk and

contained in the intruder path j. At each iteration t and for each sensor sq ∈ S , we maintain
a set of weights σq

t ∈ Rd, where d = |Θ|, which are proportional to the likelihood of selecting
different orientations for the sensor. The joint sensor scheduling strategy i ∈ I can be denoted as
i = [k1,i, k2,i, . . . , kp,i], where kq,i ∈ {θ1, . . . , θd} is the orientation of the sensor sq ∈ S in the
joint strategy i ∈ I . We update the weights for each joint strategy i ∈ I as follows:

wt(i) =

p∏
q=1

σq
t (kq,i), (9)

where σq
t (kq,i) is the weight assigned to the orientation θk for the sensor sq in the joint strategy

i ∈ I . At each iteration t, the weights σq
t (kq,i) are updated using the multiplicative rule in (11)

using a learning rate β ∈ (0, 1) and the loss per sensor (sq ∈ S) for each individual strategy
θk ∈ Θ, denoted as ℓqt (θk), given by

ℓqt (θk) =
∑
j∈J

Aq
kjyt(j)−

1

p

∑
j∈J

rjyt(j). (10)

Based on Theorem 5 in Freund and Schapire (1997), we have the following theoretical guaran-
tees for Algorithm 1.

Theorem 4 Let {x1, . . . , xT } and {y1, . . . , yT } be the mixed strategies returned by Algorithm 1

after T iterations with β =

(
1 +

√
2|S|ln|Θ|

L̃

)−1

, where L̃ ≥ mini∈I
∑T

t=1

∑p
q=1 ℓ

q
t (θk). Let

x̄ = 1
T

∑T
t=1 xt and ȳ = 1

T

∑T
t=1 yt. Then, x̄ and ȳ are valid mixed-strategies for the two players,

respectively. The pair (x̄, ȳ) approximates the game’s Nash Equilibrium value within ϵT , given by

ϵT =

√
2L̃|S|ln|Θ|

T
+
|S|ln|Θ|

T
. (12)
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Algorithm 1 Distributed Weighted Majority (DWM) Algorithm
Data: Intrusion Detection Game G, Parameter β ∈ (0, 1), Number of Iterations T
Result: Mixed-strategies: {x1, . . . , xT }, {y1, . . . , yT }
Initialize: σq

0(θk) = 1/|Θ|, k = 1, ..., |Θ|; w0(i) = 1/|I|, i = 1, ...,m
for t = 1, . . . , T do

Compute defender’s mixed-strategy xt(i) =
wt(i)∑

i′∈I wt(i′)
, ∀i ∈ I

Estimate intruder’s mixed-strategy yt = maxy∈Y x⊤t Ay
Compute per sensor loss ℓqt (·) as in Equation (10)
Update weights for each sensor

σq
t+1(kq,i) = σq

t (kq,i)β
ℓqt (θk); k = 1, . . . , |Θ|, q = 1, ..., p (11)

Update joint strategy weights: wt+1(i) =
∏p

q=1 σ
q
t+1(kq,i),∀i ∈ I

end

L̃ in Theorem 4 is an upper bound on the sum of losses over T iterations, which can be naively
bounded by T . For a desired approximation ϵ, running Algorithm 1 for T iterations (where T can
be computed using (12)), with the specified learning rate β, will yield an ϵ-NE strategy (x̄, ȳ).

Remark 5 The DWM algorithm exploits the additive structure of the game’s payoff function, achiev-
ing a substantial computational advantage by performing only O(|S||Θ|) multiplicative updates in
parallel (i.e., O(|Θ|) updates for each sensor s ∈ S in parallel), to estimate the NE strategy for
the defender. In contrast, directly applying the WM algorithm requires O(|Θ||S|) updates, which
cannot be parallelized, making DWM far more efficient for large-scale instances.

4. Online Learning and Adaptation for Unknown Sensor Models

In this section, we extend our study of the sensor scheduling problem to scenarios where the de-
fender lacks knowledge of the true sensor models and, consequently, the game’s payoff matrix. We
present online learning algorithms with performance guarantees for both homogenous and hetero-
geneous sensor settings, for refining the defender’s strategies based on bandit feedback.

Since the defender does not have accurate knowledge of the game’s payoff, it maintains an es-
timate of the game matrix, which is updated iteratively using feedback from sensor observations.
At each time step t, the defender computes a mixed strategy xt ∈ X for scheduling sensors, based
on its current estimate of the game matrix. The defender and intruder play pure strategies (it, jt),
sampled from their mixed-strategy distributions (xt, yt) respectively. The defender receives feed-
back from the sensors monitoring the intruder’s path, indicating whether or not the intruder was
detected. We will first consider the setting with homogenous sensors, where the game matrix A can
be parametrized by a single (unknown) Bernoulli distribution with parameter pdetect. As a result, the
game matrix can now be defined as Aij = Vij log (1− pdetect)+ci−rj , where Vij =

∑p
q=1 V

q
ij . We

defineFt = ((i1, j1), . . . , (it, jt)) to be the sequence of observations available to the player at round
t. Two aspects of this problem distinguish it from other setups considered in the literature (Cheung
and Piliouras (2019); Andrade et al. (2021); O’Donoghue et al. (2021)). Firstly, the defender re-
ceives the pure strategy played by the intruder (jt) as feedback (as opposed to yt), and secondly, the
intruder does not have accurate knowledge of the game payoff function/matrix. Additionally, our
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setting is different from the one considered in O’Donoghue et al. (2021), where the players receive
a noisy feedback of the payoff, and the noise process is assumed to be 1-sub-Gaussian with a zero
mean. At each time step t, the defender updates its estimate of p̂tdetect of the true parameter pdetect
and estimates the game matrix Ât (see Algorithm 2). Another key distinction from O’Donoghue
et al. (2021) is that our problem setting under homogenous sensors does not need complete explo-
ration of the strategy spaces. We introduce a simpler algorithm that eliminates the need for Upper
Confidence Bound (UCB) estimates for each entry of the A matrix, as the exploration-driven opti-
mism framework is not required in this scenario. Consequently, we establish tighter regret bounds
that do not depend on the strategy spaces, i.e., (Õ(

√
T ) instead of Õ(

√
|I||J |T ) ).

Algorithm 2 Online Learning and Adaptation of Strategies for Homogenous Sensors
Feedback samples: H = ∅
for t = 1, . . . , T do

Compute sample average p̂tdetect using samples inH
Clipping estimator: p̄tdetect,l = min(max(p̄tdetect,l, pmin,l), pmax,l); l = 1, ...p

Solve the estimated game Ât, where Ât(i, j) = Vij log(1− p̂tdetect) + ci − rj :

(x∗t , y
∗
t ) ∈ argmin

x∈X
argmax

y∈Y
x⊤Âty (using Algorithm 1) (13)

Play pure strategy it ∼ x∗t and observe intruder’s pure strategy jt ∼ yt
Collect Vit,jt samples from sensor feedback intoH

end

In Algorithm 2, we use a clipped estimator for the parameter p̂tdetect, which keeps the estimate
within a feasible range [pmin, pmax] ; this ensures stability in small sample sizes without affecting
long-term convergence to the true parameter pdetect. Furthermore, in each iteration of Algorithm 2,
the estimated game (as in (13)) can be efficiently solved for NE strategies using Algorithm 1.

We will perform analysis from the perspective of a single player, i.e., the defender, who does
not control the actions of the opponent (i.e., the intruder). Let (x†, y†) denote a pair of NE strategies
of the game G (with payoff matrix A), and V ∗

A = x†⊤Ay† be the value of the true game. In order to
analyze the performance of the online learning algorithm, we consider the individual regret for the
defender, i.e., the difference in expected cumulative payoffs relative to the value of the game:

RT =

T∑
t=1

(
x⊤t Ayt − V ∗

A

)
. (14)

Building on the results from perturbation theory in zero-sum games presented in Lipton et al.
(2006) we present the following result, characterizing the bound on the cumulative regret in (14).

Theorem 6 Under Assumption 1, for a specified α ∈ (0, 1), with probability at least 1 − α,
Algorithm 2 has the following guarantees for the cumulative regret (as in (14)):

1. RT ≤
5
√
2Vmax

(1− pmax)

√
T log

2T

α
; yt = y† (i.e., yt is any NE of G);

2. RT ≤
2
√
2Vmax

(1− pmax)

√
T log

2T

α
; yt ̸= y† (i.e., yt is not a NE of G),
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where Vmax = max
i,j

Vij and pmax is the maximum probability of detection of the sensors.

Remark 7 In Cai et al. (2024), the authors propose an online learning algorithm which is an adap-
tation of EXP3-IX, where they assume the existence of mixed-strategy Nash equilibrium with full
support. Particularly, at each iteration t of their algorithm, they restrict the space of NE strategies
to Ωt = {x ∈ X : xa ≥ 1

|I|t2 , ∀a ∈ I}. However, many zero-sum games are not guaranteed to have
a mixed-strategy Nash equilibrium with full support. In our algorithm, we do not restrict the space
of NE strategies for the players. Additionally, our results presented in Theorem 6 provide tighter
regret guarantees Õ(T− 1

2 ) compared to Õ(T− 1
8 ) presented in Cai et al. (2024).

We will now consider the setting with heterogeneous sensors, i.e., each sensor has a different
probability of detection. In this setting, the game’s payoff matrix A can be parameterized by a set of
|S| Bernoulli distributions, with parameters {pdetect,1, . . . , pdetect,p}, p = |S|, each corresponding
to a sensor sl ∈ S, l = 1, . . . , p. The game’s payoff matrix in this setting is given by:

Aij =

p∑
l=1

Vij,l log(1− pdetect,l) + ci − rj , (15)

where Vij,l is the number of nodes covered by the sensor l in the joint strategy i ∈ I and contained
in the intruder’s path j ∈ J , and ci, rj are sensor and path costs as specified before, respectively.
Define maxij Vij,l = Vmax,l. We note that each entry of A may not depend on all |S| Bernoulli
parameters, as Vij,l can be zero for a subset of sensors in S. This is due to the fact that every
intruder path j ∈ J will intersect nodes covered in the graph by only a subset of the sensors. Thus,
unlike the homogenous sensors setting, we will need exploration of strategies of both the players to
ensure better estimates of these Bernoulli parameters.

We adapt the Upper Confidence Bound (UCB) algorithm for learning in matrix games proposed
in O’Donoghue et al. (2021), by constructing the UCB estimate for the game matrix A based on the
confidence bounds of the Bernoulli parameters. We assume that ci’s and rj’s are known.

Lemma 8 For the game matrix A defined in (15), the following holds with probability at least 1−δ,

Aij ≤ Āt
ij +

p∑
l=1

Vmax,l

1− pmax,l

√
log(2δ )

2(1 ∨ nt
ij,l)

= Ãt
ij , ∀i, j, (16)

where Āt
ij is an estimate of Aij evaluated with sample averages p̄tdetect,l, n

t
ij,l is the number of times

the intruder chooses the path j which contains nodes covered by the sensor l in the joint orientation
strategy i up to (but not including round t), and we use the notation (1 ∨ ·) = max(1, ·).

Define V̄max = maxl Vmax,l and p̄max = maxl pmax,l. We have the following result that
characterizes the bound on the regret (Equation (14)) when Algorithm 1 in O’Donoghue et al. (2021)
is applied to the instance of the intrusion detection game with the UCB estimate Ãt

ij as defined in
Equation (16).

Theorem 9 Let Assumption 1 hold and let T ≥ |S||Θ||J | ≥ 2, δ = 1/(2T 2|S||Θ||J |). When
Algorithm 1 in O’Donoghue et al. (2021) is applied to the instance of the intrusion detection game
with the UCB estimate Ãt

ij (as in (16)), the regret (as in (14)) is bounded as:

RT ≤ 1 + C|S|
√
2|Θ||J |T log(4T 2|S||Θ||J |) = Õ(

√
|S|2|Θ||J |T ), (17)
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where C = V̄max/(1− p̄max)

Remark 10 Applying Algorithm 1 of O’Donoghue et al. (2021) directly would result in a regret
bound that depends exponentially on the number of sensors, i.e., Õ(

√
|Θ||S||J |T ). We leverage the

specific structure of the game to achieve significant improvements in the regret bound in Theorem
9, i.e., Õ(

√
|S|2|Θ||J |T ), which will lead to faster convergence to the NE strategy for the defender.

Additionally, the parameter δ, which governs the balance between exploration, regret bounds, and
high-probability guarantees depend on |Θ||S||J | instead of |Θ||S||J |. We present the adapted UCB
algorithm (Algorithm 3) and additional discussions in Appendix A.

5. Experiments

In this section, we evaluate the performance of the proposed algorithms through simulations.

5.1. Empirical Evaluation of Distributed Weighted Majority Algorithm

In this section, we present numerical evaluations to show the computational efficiency of DWM
algorithm. We consider the nine-room grid world environment as shown in Figure 1. This is a
19 × 19 cell environment, which can be represented by a graph. Sensors are installed on the cells
(resp. nodes in the graph) marked in red (and numbered), and all cells marked in black are obstacle
cells. We set |Θ| = 4, i.e., each sensor has 4 possible orientations: { East, North, West, South}.
We vary the number of sensors |S| ∈ {2, 3, 4, 5, 6, 7, 8} to generate multiple instances of the game.

Figure 1: Sample sensor scheduling
strategy (pure strategy) of the defender

The defender’s strategy space, given by 4|S|, scales ex-
ponentially with the number of sensors in S. The in-
truder’s strategy space is set to |J | = 50, i.e., there are
50 possible paths for the intruder (e.g., see Figure 2(b))
from node S (marked in yellow) to node T (marked in
orange) in the grid. All simulations are run on a 2.6 GHz
6-Core Intel Core i7 machine. We set ϵT = 0.001, i.e.,
we wish to compute a ϵ-Nash Equilibrium for the game
with ϵ = 0.001. For each instance of the game, we com-
pute the number of iterations T based on |I| and ϵT using
Equation (12) by setting L̃ = T . We solve for the NE
strategies using three approaches: (i) a standard bi-level
Linear Program (LP) (using Gurobi Optimization Solver), (ii) WM algorithm (as in Freund and
Schapire (1997)) and (iii) DWM algorithm (Algorithm 1) for T iterations, and record the running
times in Table 1. We observe that the WM and DWM algorithms solve the game to within a 0.001
approximation of the game value much faster than the LP. We observe that as the strategy space
increases, the DWM algorithm outperforms the WM algorithm, with a significant reduction in run-
ning time. Due to limitations on the problem sizes in Gurobi Solver (academic license), we cannot
solve LPs for problem instances with strategy spaces more than 2000.

5.2. Empirical Evaluation of Online Learning Algorithm

We consider the intrusion detection game under homogenous sensors, and evaluate the performance
of Algorithm 2. We set the true Bernoulli parameter to pdetect = 0.8 and generate several instances
(A matrices) by uniform random sampling of Vij ∈ [10, 20],∀(i, j) ∈ I × J , with I = {1, ..., 10}
and J = {1, ..., 20}. We solve for the NE strategies (x†, y†) using Algorithm 1 with ϵT = 10−6 and
estimate the optimal game value V ∗

A = x†⊤Ay†. We run Algorithm 2 in both settings: (i) yt = y†;

9
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|S| Strategy Spaces Linear Program Weighted Majority Distributed Weighted Majority
2 16× 50 3.22 2.73 2.68
3 64× 50 7.90 3.04 3.65
4 256× 50 24.88 6.09 4.28
5 1024× 50 75.72 12.15 6.13
6 4096× 50 - 35.51 7.88
7 16, 384× 50 - 107.65 9.92
8 65, 536× 50 - 365.43 11.83

Table 1: Comparison of running times (in seconds) of Distributed Weighted Majority Algorithm
(Algorithm 1) with standard Weighted Majority algorithm and Linear Program

and (ii) yt being a random point on the probability simplex Y for each t. We plot the cumulative
regrets RT (for y ̸= y†) and R†

T (for y = y†) by setting T = 1000 in Figure 2(a). We observe
that the regret grows sublinearly, indicating that the learning algorithm is effectively adapting and
improving its performance over iterations. Additionally, we note that the regret is higher when the
intruder employs the (optimal) Nash equilibrium strategy of the true game.

(a) b (b) b

Figure 2: (a) Cumulative regret plots for Algorithm 2; (b) Sample paths (pure strategies) of the
intruder in the 9-room grid world

6. Conclusions

In this paper, we address the problem of sensor scheduling for intrusion detection by formulat-
ing it as a zero-sum game over a graph. We proposed a distributed algorithm, which leverages the
structure of the game’s payoff, for efficiently computing equilibrium strategies for instances with ex-
ponentially large strategy spaces. We further extend our analysis to scenarios with unknown sensor
models, introducing online learning algorithms with high-probability regret guarantees for learning
equilibrium strategies under bandit feedback. Our work leverages the structure in the combinatorial
action space of the players to achieve significant computational efficiency and scalability. Empiri-
cal evaluations demonstrate the practical effectiveness of our approach, showing near-optimal and
scalable performance over several instances of the game. In future work, we aim to extend the
framework to dynamic game environments, where strategies can adapt to changes in sensor perfor-
mance, including degradation or reconfiguration, as well as stochastic variations in game payoffs.

10
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Appendix A. Upper Confidence Bound Algorithm for Matrix Games

In this section, we present the adaptation of the UCB algorithm in O’Donoghue et al. (2021) for
the intrusion detection game studied in this paper. The UCB algorithm and regret analysis in
O’Donoghue et al. (2021) is presented with respect to the max-player, however, in our game setting,
the defender is the min-player. From Remark 3, we have the following:

(x∗, y∗) = argmin
x∈X

argmax
y∈Y

x⊤Ay = argmax
x∈X

argmin
y∈Y

x⊤(−A)y (18)

V ∗
A = −V ∗

−A. (19)

Therefore, without loss of generality, we will consider the game matrix to be −A and note that the
UCB estimate for analyzing the regret will remain the same, as the following relationship holds for
the regret R(A,UCB,T) as defined in O’Donoghue et al. (2021): R(A,UCB,T) = −RT , where
RT is the regret measure defined in our paper in (14).

Algorithm 3 Online Learning and Adaptation of Strategies for Heterogeneous Sensors
Feedback samples: H = ∅
for t = 1, 2, . . . , T do

Compute sample average p̄tdetect,l using samples inH
Clipping estimator: p̄tdetect,l = min(max(p̄tdetect,l, pmin,l), pmax,l); l = 1, ...p

Compute Ãt
ij = Āt

ij +

p∑
l=1

Vmax,l

1− pmax,l

√
log(2δ )

2(1 ∨ nt
ij,l)

Solve the estimated game Ãt:

(x∗t , y
∗
t ) = argmax

x∈X
argmin

y∈Y
x⊤Ãty (20)

Play pure strategy it ∼ x∗t and observe intruder’s pure strategy jt ∼ yt
Collect samples from sensor feedback intoHt: H ← H∪Ht

end

Appendix B. Theoretical Proofs

B.1. Proposition 2

Proof We have A′
ij = Aij−rj and B′

ij = Bij−ci. By substitution, we have A′
ij = log(pmiss(i, j))+

ci− rj and B′
ij = − log(pmiss(i, j))+ rj − ci. It follows that A′

ij = −B′
ij and thus A′

ij +B′
ij = 0.

Thus, the game G′ = {A′, B′} is a zero-sum game. The equivalence of Nash Equillbirum strategies
for G and G′ follows directly from the results presented in Section 2.1 in Kannan and Theobald
(2010).
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B.2. Theorem 4

Proof We establish this result by showing the equivalence between the multiplicative weight up-
dates made by the DWM algorithm (Algorithm 2) to that of the Weighted Majority algorithm in
Freund and Schapire (1997). Consider the per-agent loss function

ℓqt (θk) =
∑
j∈J

Aq
kjyt(j)−

1

p

n∑
j=1

rjyt(j). (21)

Now, consider the joint strategy weight update rule given by

wt+1(i) =

p∏
q=1

σq
t+1(kq,i). (22)

Substituting for σq
t+1(kq,i), we have

wt+1(i) =

p∏
q=1

σq
t (kq,i)β

ℓqt (iq), (23)

=

 p∏
q=1

σq
t (kq,i)

β

(

p∑
q=1

ℓqt (θk))

(24)

From definition of Aq
kj in (8), we have

p∑
q=1

ℓqt (θk) =

p∑
q=1

∑
j∈J

Aq
kjyt(j)−

1

p

n∑
j=1

rjyt(j)

 (25)

=

p∑
q=1

∑
j∈J

(
V q
kj × log(1− pdetect,q) + cqk

)
yt(j)−

∑
j∈J

rjyt(j) (26)

=
∑
j∈J

 p∑
q=1

V q
kj × log (1− pdetect,q)

 yt(j) +
∑
j∈J

ciyt(j)−
∑
j∈J

rjyt(j) (27)

=
∑
j∈J

(log(pmiss(i, j))) yt(j) +
∑
j∈J

ciyt(j)−
∑
j∈J

rjyt(j) (28)

=
∑
j∈J

(log(pmiss(i, j)) + ci − rj) yt(j) (29)

=
∑
j∈J

Aijyt(j). (30)

From Equations (11) and (9) we have, wt+1(i) = wt(i)β
ℓt(i), where ℓt(i) =

∑
j∈J Aijyj .

The weight update rule of the DWM algorithm (Algorithm 1) is equivalent to the multiplicative
weight update over the defender’s joint strategy space when the Weighted Majority Algorithm (as in
Freund and Schapire (1997)) is applied to compute the mixed strategies x ∈ X for the defender. The
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guarantees presented in this theorem directly follow from the Theorem 5 for the Hedge(β) algorithm
presented in Freund and Schapire (1997). We refer interested readers to Littlestone and Warmuth
(1994) and Nehme (2009) for detailed theoretical analysis of the weighted majority algorithm for
zero-sum games.

B.3. Theorem 6

Proof We begin by establishing a bound on ||Ât−A||∞. For each round of interaction t, the players
play strategies it, jt and the defender receives Vit,jt feedbacks from the sensors, i.e., for each node
l traversed in the path jt and covered by the joint sensor strategy it, the sensors get a 0/1 feedback
whether the intruder was detected or not, denoted by the Bernoulli random variable Zt,l

ij . For round
t, the estimate of Bernoulli parameter p̂tdetect is computed as follows:

p̂tdetect =
1

Vit,jt

Vit,jt∑
l=1

Zt,l
ij . (31)

The sample average for T rounds of interaction is given by

p̂Tdetect =
1

T

T∑
t=1

 1

Vit,jt

Vit,jt∑
l=1

Zt,l
ij

 . (32)

After T rounds, the average number of samples obtained per round is given by

k̄ =
1

T

T∑
t=1

Vit,jt , (33)

and the total number of samples if k̄T . Let pdetect denote the true Bernoulli parameter, i.e., true
probability detection of the sensors. Applying Hoeffding’s inequality, we have

P
(
|p̂Tdetect − pdetect| ≥ ϵT

)
≤ 2 exp

(
−2k̄T ϵ2T

)
. (34)

We define η ≥ 2 exp
(
−2k̄T ϵ2T

)
. For a specified ϵT , with probability at least 1 − η, for T >

1
(2k̄ϵ2T )

log 2
η , we have |p̂Tdetect − pdetect| ≤ ϵT .

We will now establish a bound for ||Ât −A||∞. By substituting for Aij , we have,

|Ât,ij −Aij | = Vij | log(1− p̂tdetect)− log(1− pdetect)|. (35)

By applying the Mean Value Theorem to the function log(1− p), we have the following bound

| log(1− p̂tdetect)− log(1− pdetect)| ≤
|p̂tdetect − pdetect|

1−max(p̂tdetect, pdetect)
. (36)

Since the true parameter pdetect ∈ [pmin, pmax], clipping the estimates p̂tdetect does not violate
the Hoeffding’s bound, and thus we have 1 − max(p̂tdetect, pdetect) ≥ 1 − pmax. Additionally,
Vij ≤ Vmax, which leads to the following bound:

||Ât −A||∞ ≤
Vmax|p̂tdetect − pdetect|

1− pmax
. (37)
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Denote δt =
Vmax|p̂tdetect−pdetect|

1−pmax
. We have δt ≤ Vmaxϵt

(1−pmax)
, with probability at least 1− η.

Since with probability 1− η, we have ϵt =

√
log (2/η)

2t (from Hoeffding’s bound), we have

||Ât −A||∞ ≤
Vmax√

2t(1− pmax)

√
log

2

η
. (38)

We will now analyze the regret RT as defined in (14). Consider Case 1, where yt = y†, i.e., the
intruder knows the true game matrix A and plays the NE strategy y† of the true game. Consider the
instantaneous regretRt for round t:

Rt = x∗⊤t Ay† − V ∗
A = x∗⊤t Ay† − x†⊤Ay†. (39)

By adding and subtracting x∗t Âty
†, we have

Rt = x∗⊤t Ay† − x∗⊤t Âty
†︸ ︷︷ ︸

Term-I

+x∗⊤t Âty
† − x†⊤Ay†︸ ︷︷ ︸

Term-II

. (40)

Term-I:

x∗⊤t Ay† − x∗⊤t Âty
† = x∗⊤t

(
A− Ât

)
y† ≤ ||Ât −A||∞ ≤ δt. (41)

To Term-II, we add and subtract x†⊤Âty
†, and obtain the following:

Term-II = x∗⊤t Âty
† − x†⊤Âty

†︸ ︷︷ ︸
Term-II-I

+x†⊤Âty
† − x†⊤Ay†︸ ︷︷ ︸

Term-II-II

(42)

Now consider Term-II-I. We know that (x∗t , y
∗
t ) is the NE for Ât. Since the y-player is maximizing

the expected game value, we have x∗t Âty
∗
t ≥ x∗t Âty,∀y ∈ Y and thus we have x∗t Âty

† ≤ x∗t Âty
∗
t .

As a result, we have
Term-II-I ≤ x∗t Âty

∗
t − x†⊤Âty

†. (43)

The right-hand side of the above expression can be viewed as the difference in the game values
when the NE strategies of a game A, i.e., (x†, y†), are played in a perturbed game Ât. From Theorem
4 in Lipton et al. (2006), we have the following:

Term-II-I ≤ 3||Ât −A||∞ = 3δt. (44)

Term-II-II

x†⊤Âty
† − x†⊤Ay† = x†⊤(Ât −A)y† ≤ ||Ât −A||∞ = δt. (45)

Combining Equations (41), (44) and (45), we have the following bound on the instantaneous
regretRt:

Rt ≤ δt + 3δt + δt = 5δt. (46)
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The cumulative regret can be bounded as follows. With probability at least 1− α,

RT =
T∑
t=1

Rt ≤
T∑
t=1

5δt (47)

≤ 5Vmax√
2(1− pmax)

√
log

2

η

T∑
t=1

1√
t

(48)

≤ 5Vmax√
2(1− pmax)

√
log

2

η

∫ T

t=0

1√
t

(49)

≤ 5Vmax√
2(1− pmax)

√
log

2

η
× 2
√
T (50)

≤ 5
√
2Vmax

(1− pmax)

√
T log

2T

α
, (51)

where α = Tη. This completes the proof of Part 1.
Now consider the scenario where yt ̸= y†, i.e., when the defender is playing against a suboptimal

opponent (intruder), who does not play the NE strategy of the true game. The instantaneous regret
is given by

Rt = x∗⊤t Ayt − V ∗
A = x∗⊤t Ayt − x†⊤Ay†. (52)

By adding and subtracting x∗⊤t Âtyt, we have

Rt = x∗⊤t Ayt − x∗⊤t Âtyt︸ ︷︷ ︸
Term-I

+x∗⊤t Âtyt − x†⊤Ay†︸ ︷︷ ︸
Term-II

. (53)

Term-I:
x∗⊤t Ayt − x∗⊤t Âtyt = x∗⊤

(
A− Ât

)
yt ≤ ||Ât −A||∞ = δt. (54)

In Term-II, we have x∗⊤t Âtyt ≤ x∗⊤t Âty
∗
t , since the y-player is maximizing the expected game

value, and thus
x∗⊤t Âtyt − x†⊤Ay† ≤ x∗⊤t Âty

∗
t − x†⊤Ay†. (55)

From Theorem 5 in Lipton et al. (2006), we have that x∗⊤t Âty
∗
t − x†⊤Ay† < ||Ât − A||∞, and

thus

x∗⊤t Âtyt − x†⊤Ay† ≤ ||Ât −A||∞ = δt. (56)

Combining the terms in Equations (54) and (56), we have

Rt ≤ δt + δt = 2δt. (57)

Using similar arguments as in Case 1, we have with probability at least 1− α,

RT ≤
2
√
2Vmax

(1− pmax)

√
T log

2T

α
. (58)
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B.4. Lemma 8

Proof Consider the following expression for Aij :

Aij =

p∑
l=1

Vij,l log(1− pdetect,l) + ci − rj . (59)

We have the following confidence bound estimate for pdetect,l which follows from Hoeffding
inequality (alternatively a special case of Chernoff’s bound): With probability at least 1− δ

pdetect,l ≤ p̄tdetect,l +

√
log 2

δ

2(1 ∨ nt
ij,l)

= p̃tl . (60)

Using the similar technique as in proof of Theorem 6, we apply the Mean Value Theorem to the
function Aij(pdetect,l) with respect to pdetect,l, l = 1, ..., p ( as in (59)) to obtain the following UCB
estimate for Aij

Aij ≤ Āt
ij +

p∑
l=1

Vmax,l

1− pmax,l

√
log(2δ )

2(1 ∨ nt
ij,l)

= Ãt
ij , (61)

where Vmax,l = maxij Vij,l.

B.5. Theorem 9

Proof We establish this proof by making similar arguments as in Theorem 1 of O’Donoghue et al.
(2021). Note that we discuss the equivalence of our regret definition and problem setting with the
one presented in O’Donoghue et al. (2021) in Appendix A.

Since the upper confidence matrix (61) overestimates the true matrix, we have V ∗
Ãt
≥ V ∗

A (see
Proof of Theorem 1 in O’Donoghue et al. (2021)). Let Et be the bad event that there exists a pair i, j
such that pdetect,l > p̃tl for l = 1, ..., p. By definition, Et ∈ Ft. Consider that Et does not hold and
let x∗t be the best-response of the x-player at round t. We have the following for the instantaneous
regretRt:

Rt = (V ∗
A − x⊤t Ayt) ≤ (V ∗

Ãt
− x⊤t Ayt); (62)

= (x∗⊤t Ãtyt − x⊤t Ayt); (63)

≤ (x⊤t (Ãt −A)yt); (64)

le

[
p∑

l=1

Vmax,l

1− pmax,l

√
log(2δ )

2(1 ∨ nt
ij,l)

]
, (65)

where the last step is obtained by substituting the upper confidence bound expression as in (61).
The cumulative regret can be decomposed into the sum of regrets due to the good and bad events,
and is given by

RT =
T∑
t=1

Rt; (66)

≤

[
T∑
t=1

p∑
l=1

Vmax,l

1− pmax,l

√
log(2δ )

2(1 ∨ nt
ij,l)

]
+ TP(∪Tt=1Et), (67)
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with probability at least 1 − δ. Using similar arguments as in Theorem 1 in O’Donoghue et al.
(2021), we bound the second term as follows: TP(∪Tt=1Et) ≤ 2T 2|S||Θ||J |δ ≤ 1. Recall that
V̄max = maxl Vmax,l, p̄max = maxl pmax,l and C = V̄max/(1− p̄max).
The first term is bounded by[

T∑
t=1

p∑
l=1

Vmax,l

1− pmax,l

√
log(2δ )

2(1 ∨ nt
ij,l)

]
≤ V̄max

1− p̄max

∑
ij

p∑
l=1

√
2nT

ij,l log
2

δ
; (68)

≤ C|S|
√
2|Θ||J |T log

2

δ
. (69)

By substituting with δ = 1/2T 2|S||Θ||J |, we have with probability at least 1− δ,

RT ≤ 1 + C|S|
√

2|Θ||J |T log(4T 2|S||Θ||J |) = Õ(
√
|S|2|Θ||J |T ). (70)
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