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• Communication is a critical aspect of Multi-Agent 
Reinforcement Learning (MARL) for cooperative tasks

• Communication based policies are prone to severe issues 
due to noise or attacks on the communication channels

INTRODUCTION

EXPERIMENTS

Figure 3: Network Architecture - Multi-Agent Structured Attentive 
Reasoning Network for Adversarial Communication (Adver-SAR)

ATTENTIVE REASONING NETWORK ADVERSARIAL COMMMUNICATION

CONCLUSIONS & FUTURE WORK

• Empirical evaluation: Cooperative navigation tasks of varying levels of difficulty

• Environment: OpenAI Gym Traffic Junction v0  

• Difficulty Levels: Easy (1 junction), Medium (4 junctions) and Hard (8 junctions)

• Noise Model: Zero-Mean Gaussian Noise 

• Evaluation Baseline:  SARNet - State of the art attention-based MARL framework

• Evaluation Metric: Success Rate ( % of collision free episodes)

• Message Sizes:  8-bit, 16-bit and 32-bit messages 

• Number of Agents: 3, 6, 10 agents
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MARL FRAMEWORK  

• Centralized Training and Decentralized Execution (CTDE) 
for learning communication-based policies

• Central critic receives local actions of all agents and 
evaluates a centralized action-value function

• Agents are cooperative and have no adversarial intent 
(adversaries are external only)

• Inter-agent communication is potentially corrupted by 
noise in the communication channels

• Filter unit has an Auto-Encoder for anomaly detection.

• Auto-Encoder (AE) network is trained under a non-
adversarial setting to learn the distribution of 
uncorrupted messages

• Filtering unit uses this AE network to identify if the 
communicated messages are corrupted (i.e., out of 
distribution (OOD))

Figure 2: Centralized Actor-Critic Reinforcement Learning

Figure 1: Multi-Agent Cooperative Navigation Scenario

Figure 4: Anomaly Detection using Generative Models
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Msg Size → 8 bit 16 bit 32 bit
Num Agents ↓ SARNet AdverSAR SARNet AdverSAR SARNet AdverSAR

3 84.41 ± 3.83 86.26 ± 1.30 77.34 ± 2.06 80.94 ± 3.03 85.61 ± 2.14 88.15 ± 2.45

6 61.03 ± 1.28 66.47 ± 2.35 72.53 ± 1.60 76.83 ± 3.23 78.31 ± 1.79 80.02 ± 2.50

10 58.10 ± 2.10 59.23 ± 1.39 65.42 ± 2.38 69.36 ± 3.21 72.70 ± 3.72 78.73 ± 1.03

Figure 5: Traffic Junction Environment – (left) Easy, (right) Medium Figure 6: Reward Curves – (left) No Noise, (center) SARNet with Noise, (right) AdverSAR with noise

Table 1: Comparison of Success Rate (%) for SARNet vs. AdverSAR with varying message sizes and number of 
agents with difficulty level Medium Conclusions:

• Proposed a novel framework for multi-agent cooperative 
navigation under corrupted communication

• Demonstrated improve performance on cooperative 
navigation tasks with increasing levels of difficulty

Future Work:

• Test the framework on a variety of multi-agent 
cooperative tasks like Predator-Prey, StarCraft etc.

• Extend the framework to multi-agent tasks with 
adversarial agents and competitive tasks
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